
CONTRI BUTED ARTICLE

Expert-driven genetic algorithms for simulating
evaluation functions

Omid David-Tabibi • Moshe Koppel •

Nathan S. Netanyahu

Received: 6 November 2009 / Revised: 6 February 2010

� Springer Science+Business Media, LLC 2010

Abstract In this paper we demonstrate how genetic algorithms can be used to

reverse engineer an evaluation function’s parameters for computer chess. Our

results show that using an appropriate expert (or mentor), we can evolve a program

that is on par with top tournament-playing chess programs, outperforming a two-

time World Computer Chess Champion. This performance gain is achieved by

evolving a program that mimics the behavior of a superior expert. The resulting

evaluation function of the evolved program consists of a much smaller number of

parameters than the expert’s. The extended experimental results provided in this

paper include a report on our successful participation in the 2008 World Computer

Chess Championship. In principle, our expert-driven approach could be used in a

wide range of problems for which appropriate experts are available.

Keywords Computer chess � Fitness evaluation � Games � Genetic algorithms �
Parameter tuning

A preliminary version of this paper appeared in Proceedings of the 2008 Genetic and Evolutionary
Computation Conference [13] and received the Best Paper Award in the conference’s Real-World

Applications track.

O. David-Tabibi (&) � M. Koppel � N. S. Netanyahu

Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel

e-mail: mail@omiddavid.com

M. Koppel

e-mail: koppel@cs.biu.ac.il

N. S. Netanyahu

e-mail: nathan@cs.biu.ac.il; nathan@cfar.umd.edu

N. S. Netanyahu

Center for Automation Research, University of Maryland, College Park, MD 20742, USA

123

Genet Program Evolvable Mach

DOI 10.1007/s10710-010-9103-4

1 Introduction

Since the dawn of modern computer science, game playing has posed a formidable

challenge in the field of Artificial Intelligence. Many founding figures of computer

science and AI (including Alan Turing, Claude Shannon, Konrad Zuse, Arthur

Samuel, John McCarthy, Ken Thompson, Herbert Simon, and others) developed

game-playing programs and used games in AI research.

The ongoing key role played by and the impact of computer games on AI should

not be underestimated. If nothing else, computer games have served as an important

testbed for spawning various innovative AI techniques in domains and applications

such as search, automated theorem proving, planning, and learning. In addition, the

annual World Computer Chess Championship (WCCC) is arguably the longest

ongoing performance evaluation of programs in computer science, which has

inspired other well-known competitions in robotics, planning, and natural language

understanding.

Computer chess, while being one of the most researched fields within AI, has not

lent itself to the successful application of conventional learning methods, due to its

enormous complexity. Hence, top chess programs still resort to manual tuning of the

parameters of their evaluation function. The latter assigns a score to a given chess

position and is thus the most critical component of any chess program.

In this paper, we introduce a novel expert-driven approach for automatically

evolving the parameters of a chess program’s evaluation function through the use of

genetic algorithms (GA). The results show that our expert-driven approach for the

application of GA efficiently evolves these parameters from randomly initialized

values to highly tuned ones, yielding a program that outperforms its original version

by a wide margin. Such performance was achieved for an evolved program whose

evaluation function is considerably smaller than the expert’s, in terms of its number

of parameters.

This paper is an extended version of our previously presented work [13].

Specifically, it includes the results of an extended set of experiments that were

conducted to provide an in-depth assessment of the performance gain due to

evolution. The extended experiments consist primarily of a longer series of matches

played between the evolved organism and the expert, to compare the performance

with higher statistical confidence. (A detailed quantitative derivation to that effect is

provided in ‘‘Appendix B’’.) Additionally, we compare the performance of the

initial random organisms to that of the expert and the evolved organism, and the

performance of the evolved organism against several top commercial chess

programs, including its relative tactical strength with respect to a suite of tactical

test positions. Finally, we provide a detailed account of our participation in the 2008

World Computer Chess Championship. Running on an average single processor

laptop against nine of the strongest programs in the world (eight of which ran on fast

multicore machines ranging from 4 to 40 cores), our genetically evolved program

reached second place in the World Computer Speed Chess Championship and sixth

place in the World Computer Chess Championship, thereby further establishing the

practical merit of our approach.

Genet Program Evolvable Mach

123

The rest of the paper is organized as follows. In Sect. 2 we review past attempts

at applying evolutionary techniques in computer chess. We also compare alternative

learning methods to evolutionary methods, and argue why the latter are more

appropriate for the task in question. Section 3 presents our expert-driven approach,

including a detailed description of the chess programs used and the framework of

the GA as applied to the problem. Section 4 provides our experimental results, and

Sect. 5 contains concluding remarks and suggestions for future research.

2 Learning in computer chess

The enormously complex game of chess, referred to as ‘‘the touchstone of the

intellect’’ by Goethe, has always been one of the main battlegrounds of man versus

machine. John McCarthy refers to chess as the ‘‘Drosophila of AI’’ [23]. Chess-

playing programs have come a long way over the past several decades. While the

first chess programs could not pose a challenge to even a novice player, the current

advanced chess programs are on par with the strongest human chess players, as the

recent man versus machine matches clearly indicate. This improvement is largely a

result of deep searches that are possible nowadays, thanks to both hardware speed

and improved search techniques. While the search depth of early chess programs

was limited to only a few plies, nowadays tournament-playing programs easily

search more than a dozen plies in middlegame, and tens of plies in late endgame.

Despite their groundbreaking achievements, a glaring deficiency of today’s top

chess programs is their severe lack of a learning capability (except in most

negligible ways, e.g., ‘‘learning’’ not to play an opening that resulted in a loss, etc.).

In other words, despite their seemingly intelligent behavior, those top chess

programs are mere brute-force (albeit efficient) searchers that lack true underlying

intelligence.

2.1 Conventional versus evolutionary learning in computer chess

During more than fifty years of research in the area of computer games, many

learning methods such as reinforcement learning [31] have been employed in

simpler games. Temporal difference learning has been successfully applied in

backgammon and checkers [28, 32]. Although temporal difference learning has also

been applied to chess [4], the results showed that after 3 days of learning, the

playing strength of the program was merely 2150 Elo (see ‘‘Appendix B’’ for a

description of the Elo rating system), which is a very low rating for a chess program.

In a more recent paper, Block et al. [9] reported on their experiments applying

reinforcement learning to chess. Their results show that after the learning and

improvement phase, their program achieves a playing strength of only 2016 Elo,

which is amongst the lowest ratings for any chess program. Wiering [34] provided

formal arguments for the failure of these methods in more complicated games such

as chess.

The issue of learning in computer chess is basically an optimization problem.

Each program plays by conducting a search, where the root of the search tree is the

Genet Program Evolvable Mach

123

current position, and the leaf nodes (at some predefined depth of the tree) are

evaluated by some static evaluation function. In other words, sophisticated as the

search algorithms may be, most of the knowledge of the program lies in its

evaluation function. Even though automatic tuning methods, that are based mostly

on reinforcement learning, have been successfully applied to simpler games such as

checkers, they have had almost no impact on state-of-the-art chess engines.

Currently, all top tournament-playing chess programs use hand-tuned evaluation

functions, since conventional learning methods cannot cope with the enormous

complexity of the problem. This is underscored by the following points:

(1) The space to be searched is huge. It is estimated that there are up to 1046

possible positions that can arise in chess [11]. As a result, any method based on

exhaustive search of the problem space is infeasible.

(2) The search space is not smooth and unimodal. The evaluation function’s

parameters of any top chess program are highly co-dependent. For example, in

many cases increasing the values of three parameters will result in a worse

performance, but if a fourth parameter is also increased, then an improved

overall performance would be obtained. Since the search space is not

unimodal, i.e., it does not consist of a single smooth ‘‘hill’’, any gradient-

ascent algorithm such as hill climbing will perform poorly. Genetic

algorithms, on the other hand, are known to perform well in large search

spaces which are not unimodal.

(3) The problem is not well understood. As will be discussed in detail in the next

section, even though all top programs are hand-tuned by their programmers,

finding the best value for each parameter is based mostly on educated guessing

and intuition. (The fact that all top programs continue to operate in this manner

attests to the lack of practical alternatives.) Had the problem been well

understood, a domain-specific heuristic would have outperformed a general-

purpose method such as GA.

(4) We do not require a global optimum to be found. Our goal in tuning an

evaluation function is to adjust its parameters so that the overall performance

of the program is enhanced. In fact, a unique global optimum does not exist for

this tuning problem.

In view of the above points it seems appropriate to employ GA for automatic

tuning of the parameters of an evaluation function. Indeed, at first glance this

appears like an optimization task, well suited for GA. The many parameters of the

evaluation function (bonuses and penalties for each property of the position) can be

encoded as a bit-string. We can randomly initialize many such ‘‘chromosomes’’,

each representing one evaluation function. Thereafter, one needs to evolve the

population until highly tuned ‘‘fit’’ evaluation functions emerge.

However, there is one major obstacle that hinders the above application of GA,

namely the fitness function. Given a set of parameters of an evaluation (encoded as a

chromosome), how should the fitness value be calculated? For many years, it

seemed that the solution was to let the individuals, at each generation, play against

each other a series of games, and subsequently, record the score of each individual

Genet Program Evolvable Mach

123

as its fitness value. (Each ‘‘individual’’ is a chess program with an appropriate

evaluation function.)

The main drawback of this approach is the unacceptably large amount of time

needed to evolve each generation. As a result, severe limitations were imposed on

the length of the games played after each generation, and also on the size of the

population involved. With a population size of 100, a limitation of 1 minute per

game for each side, and assuming that each individual plays at least 10 games, it

would take 2000 min for each generation to evolve. Specifically, reaching the 50th

generation would take no less than 70 days.

In Sect. 3 we present our expert-driven approach for using GA in state-of-the-art

chess programs. Before that, we briefly review previous work in applying

evolutionary methods in computer chess.

2.2 Previous evolutionary methods applied to chess

Despite the abovementioned problems, there have been some successful applica-

tions of evolutionary techniques in computer chess, subject to some restrictions.

Genetic programming was successfully employed by Hauptman and Sipper [18, 19]

for evolving programs that can solve Mate-in-N problems and play chess endgames.

Kendall and Whitwell [22] used evolutionary algorithms for tuning the

parameters of an evaluation function. Their approach had limited success, due to

the very large number of games required (as previously discussed), and the small

number of parameters used in their evaluation function. Their evolved program

managed to compete with strong programs only if their search depth (lookahead)

was severely limited.

Similarly, Aksenov [2] used genetic algorithms for evolving the parameters of an

evaluation function, using games between the organisms for determining their fitness.

Again, since this method required a very large amount of games, the method evolved

only a few parameters of the evaluation function with limited success. Tunstall-Pedoe

[33] also suggested a similar approach, without providing an implementation.

Gross et al. [17] used a hybrid of genetic programming and evolution strategies

to improve the efficiency of an already existing search algorithm using a distributed

computing environment on the Internet.

In the following section, we present a novel approach that facilitates the use of

GA for efficiently evolving the parameters of an evaluation function. As will be

demonstrated, the method is very fast, and the evolved program is on par with

today’s strongest chess programs.

3 Expert-driven fitness evaluation

Due to the impediments already discussed, establishing fitness evaluation by means

of playing numerous games is not practical. However, one can exploit a vast

reservoir of previously under-utilized information. While the evaluation functions of

existing chess programs are carefully-guarded secrets, it is standard practice for a

Genet Program Evolvable Mach

123

chess program to (partially) reveal the score for any given position encountered in a

game. We show in this section how to use genetic algorithms to essentially reverse

engineer these evaluation functions. In particular, we show that such reverse

engineering can be carried out very rapidly and successfully, and that a program

based on an evaluation function learned from a particular expert, can perform as

well as the expert. The program evolves its evaluation function by learning from an

expert according to the steps shown in Fig. 1.

In our case, each problem is associated with a chess position, and the expert input

is the score of the evaluation function of a state-of-the-art chess engine. In other

words, we generate a list of random chess positions for each generation, and let a

strong chess engine evaluate all of them. Afterwards, we let the evaluation function

of each of these individuals evaluate the positions. The closer the evaluation of an

individual to the evaluation of the expert, the higher its fitness value. In the

following subsections, we describe in detail the chess programs, the implementation

of our expert-driven approach, and the GA parameters used.

3.1 The chess programs

We use the FALCON chess engine as the ‘‘expert’’ for our experiments. FALCON is a

2700? Elo rated grandmaster-level chess program, which has successfully

participated in three World Computer Chess Championships. (See ‘‘Appendix B’’

for the Elo rating system.) FALCON uses NEGASCOUT/PVS [10, 25] search, with null-

move pruning [5, 14, 15], internal iterative deepening [3, 29], dynamic move

ordering (history ? killer heuristic) [1, 16, 26, 27], multi-cut pruning [7, 8],

selective extensions [3, 6] (consisting of check, one-reply, mate-threat, recapture,

and passed pawn extensions), transposition table [24, 30], futility pruning near leaf

nodes [20], and blockage detection in endgames [12].

FALCON’s extensive evaluation function consists of more than 100 parameters,

and its implementation contains several thousand lines of code. Our initial

chromosomes, which are to evolve by mimicking the expert, use the exact same

search techniques FALCON is using, and differ from FALCON only in their evaluation

function, which consists of fewer than 40 parameters. In our experiments we

randomly initialize the parameters of the organisms, thus resulting in a random

evaluation function (i.e., no chess knowledge). The goal is to evolve these

parameters by mimicking the behavior of the FALCON.

Fig. 1 Expert-driven fitness evaluation

Genet Program Evolvable Mach

123

3.2 Encoding the evaluation function

Using FALCON as the expert, we evolve the evaluation functions of the organisms to

mimic the behavior of the expert, thereby improving their strength. We use only the

output of FALCON’s evaluation function, and otherwise make no assumption about

the methods FALCON uses to compute this function. Thus, we only make use of

FALCON’s scores to optimize the parameters of the organisms, not the parameter

values of FALCON’s evaluation function, which (for our purposes) are considered

unknown.

Although, as described above, our organisms’ evaluation function consists of a

much smaller number of parameters than FALCON’s, it does cover all important

aspects of a position, e.g., material, piece mobility and centricity, pawn structure,

and king safety. Despite this considerably simpler evaluation function, it can

achieve comparable performance to FALCON’s, as shown in Sect. 4.

In order to demonstrate the effectiveness of our expert-driven approach, we

ignore entirely the initial values of the evaluation function’s parameters, and

instead, assign random values to all of them. In other words, the initial organisms

play like a novice with no knowledge about the game (other than the legal moves

and certain built-in tactics).

The parameters of the evaluation functions of the organisms are represented as a

binary bit-string (chromosome size: 230 bits), initialized randomly. We further

impose the restriction that except for the five parameters representing the material

values of the pieces, all the other parameters are assigned a fixed length of 6 bits per

parameter. Obviously, there are many parameters for which 3 or 4 bits suffice.

However, allocating a fixed length of 6 bits to all parameters ensures that a priori
knowledge does not bias the algorithm in any way.

3.3 Expert-driven fitness function

As already described, our goal is to evolve the parameters so that the evaluation

function would produce as close a score as possible to FALCON’s evaluation function,

given the same position.

For our experiments, we use a database of 10,000 games by grandmasters of

rating above 2600 Elo, and randomly pick one position from each game. Of these

10,000 positions, we select 5,000 positions for training and 5,000 for testing.

At first, we let FALCON search each of the 10,000 positions to a depth of 2 plies,

and store its evaluation of the position. (Denote the expert’s score for position p by

Se,p.) Then, at each generation we randomly select 1,000 positions out of the 5,000

designated positions for the learning phase. This random selection of positions

introduces additional variety in the test sets, which should help prevent premature

convergence to suboptimal values.

For each organism we translate its chromosome bit-string into a corresponding

evaluation function, and apply the evaluation function to each of the N positions

examined (in our case, N = 1000). Let Si,p denote the score of organism i for

position p. For each position p define the organism’s error as

Genet Program Evolvable Mach

123

Ei;p ¼ jSe;p � Si;pj;

so the average overall error (for the organism) over the N positions is given by

Ei ¼
PN

p¼1 Ei;p

N
:

Finally, the fitness value of organism i is Fi = -Ei, i.e., the smaller the average

error, the higher the fitness value.

3.4 GA parameters

Other than the special fitness function described above, we use a standard

implementation of GA with proportional selection and single point crossover. The

following parameters are used:

population size = 1000

crossover rate = 0.75

mutation rate = 0.002

number of generations = 300

At the end of each generation, we replicate the best organism and delete the worst

organism. Note that each organism is in fact a unique encoding of the evaluation

function values.

In the following section we provide our experimental results, both in terms of the

learning efficiency and the performance gain of the best evolved individual.

4 Experimental results

We first present the results of running the expert-driven GA as described in the

previous section. Then, we provide the results of several experiments that measure

the strength of the evolved program in comparison to its original version.

4.1 Learning results

Figure 2 shows the average error per position of the best organism and the

population average for 300 generations1. Specifically, the results indicate that the

average error and the error of the best organism in the first few generations are

greater than 250 centipawns and 130 centipawns, respectively. These large initial

errors, that are due to the random parameter initialization, lead in the first few

generations to very small fitness values for many organisms, and subsequently, to

their rapid extinction.

1 An evaluation unit in chess programs is commonly called a centipawn, i.e., 1/100th of the value of a

pawn. Traditionally, a pawn is assigned a value of 100, and all other parameters are assigned relative

values. However, the value of a pawn itself need not be exactly 100, so a unit of evaluation may no longer

be exactly 1/100th of a pawn. Despite this inconsistency, the term centipawn is still used to denote the

smallest evaluation unit.

Genet Program Evolvable Mach

123

Close to generation 35, the average error of the best organism drops below 50

centipawns. At this stage, large parameter values (such as piece material, etc.)

are already well tuned for most of the organisms, and the smaller parameter

values are fine tuned during the remaining generations. At generation 300, the

average error of the best organism is 28 centipawns, and the average error in the

population is 47 centipawns. Figure 3 provides the evolved values of the best

individual.

With the completion of the learning phase, we used the additional 5,000 positions

set aside for testing. We let the best evolved organism evaluate these positions, and

compared its evaluation with that of the expert (FALCON). The average error in this

case is 30 centipawns. This indicates that the first 5,000 positions used for training

cover most types of positions that can arise, as the average error is very similar to

the average error for the testing set. The entire 300-generation evolution lasted 442 s

on our machine (see ‘‘Appendix A’’), that is, less than 8 min.

The results clearly demonstrate that within a few minutes our GA-based module

evolved from scratch an evaluation function whose parameters yield very similar

performance to that of the expert.

4.2 Performance of the evolved organism against the expert

We now provide the results of a series of matches played between the programs. In

order to obtain a baseline, we first observed the performance of a randomly

initialized organism (which we call RANDORG) against the expert, FALCON, and the

best evolved organism (which we call EVOL*). We then conducted a series of games

between FALCON and EVOL*. Table 1 provides the results. The matches FALCON

versus RANDORG and EVOL* versus RANDORG each consisted of 300 games played

Fig. 2 Average error per position (in centipawns) for the best organism and the population average at
each generation (total time for 300 generations: 442 s)

Genet Program Evolvable Mach

123

under a time limit of 3 min per game, and the match between EVOL* and FALCON

consisted of 1000 games played under a time limit of 10 min per game (i.e., a more

extensive set of games and a longer time limit were used in order to obtain a more

accurate assessment).

The results of FALCON versus RANDORG show that the randomly initialized

organism loses almost all the games, which is the expected outcome. The evolved

Fig. 3 Evolved parameters
of the best individual

Table 1 Results of the games between the three programs (W% is the winning percentage, and RD is the

Elo rating difference (see ‘‘Appendix B’’))

Match Result W(%) RD

FALCON-RANDORG 297.0-3.0 99.0 ?798

EVOL*-RANDORG 296.0-4.0 98.7 ?748

EVOL*-FALCON 544.5-455.5 54.5 ?31

Win = 1 point, draw = 0.5 point, and loss = 0 point

Genet Program Evolvable Mach

123

EVOL* also resoundingly outperforms the randomly initialized organism2, clearly

demonstrating the immense improvement due to evolution. Note that due to the

huge performance difference between RANDORG and the two stronger programs,

FALCON and EVOL*–RANDORG scored about 1% against each—the statistical

confidence intervals of the corresponding rating differences are fairly large (on

the order of hundreds of Elo points). Thus, even though FALCON beats RANDORG by

one point more than EVOL*, this should by no means imply that FALCON is stronger

than EVOL*.

The results further indicate that the evolved EVOL* performes on par with the

expert, FALCON. In particular, the results establish empirically that despite using an

evaluation function with a smaller number of parameters, our expert-driven module,

EVOL*, evolves parameter values that yield comparable performance to FALCON’s. In

fact, we cannot help but observe the curious fact that EVOL*’s performance is

actually a bit stronger than FALCON’s. Indeed, at 95% statistical confidence (2

standard deviations), the rating difference is 31 ± 17 Elo, and at 99.7% statistical

confidence (3 standard deviations) the rating difference is 31 ± 26 Elo. That is, the

evolved EVOL* is actually slightly superior to FALCON with a statistical confidence of

over 99.7% (see ‘‘Appendix B’’ for a detailed derivation). Apparently, the improved

performance of the evolved organism over the expert can be attributed to the

following (domain-specific) factors: (1) The evolved program’s evaluation function

has fewer parameters than the expert, which makes it capable of applying the

evaluation function faster, thus resulting in a higher processing rate (i.e., searching

more positions per second), and (2) when the program is evolved to mimic the

behavior of the expert at a 2-ply search, its evaluation function is evolved to

statically incorporate some of the dynamic knowledge of the expert.

4.3 Performance of the evolved organism against other programs

We ran two additional series, each consisting of 300 games against the chess

program CRAFTY (of Robert Hyatt [21]). CRAFTY has successfully participated in

numerous World Computer Chess Championships (WCCC), and is a direct

descendent of CRAY BLITZ, the WCCC winner of 1983 and 1986. It is frequently

used in the literature as a standard reference. Thus, we compared our evolved

EVOL*, and the expert, FALCON, against CRAFTY. Table 2 provides the results.

The results show that the evolved EVOL* is clearly superior to CRAFTY. Also, the

relative performance of FALCON and EVOL* against CRAFTY, implies again that EVOL*

is slightly stronger than FALCON.

This phenomenon was observed in yet another experiment. To measure the

tactical strength of the programs, we used the Encyclopedia of Chess Middlegames

(ECM) test suite, consisting of 879 positions. Each program was given 5 s per

position to come up with the ‘‘correct’’ move for the position. Table 3 provides the

results. As can be seen, EVOL* solved significantly more problems than CRAFTY and

a few more than FALCON.

2 Note that EVOL* and RANDORG (including the sets of parameters of their evaluation function) are

essentially the same, except for the actual values assigned to these parameters.

Genet Program Evolvable Mach

123

Finally, we extended our experiments to compare the performance of EVOL*

against several of the world’s top commercial chess programs. These programs

included JUNIOR, FRITZ, and HIARCS. JUNIOR won the World Microcomputer Chess

Championship in 1997 and 2001 and the World Computer Chess Championship in

2002, 2004, and 2006. In 2003 JUNIOR played a 6-game match against the legendary

former world champion, Garry Kasparov, that resulted in a 3–3 tie. In 2007 JUNIOR

won the ‘‘ultimate computer chess challenge’’ organized by the World Chess

Federation (FIDE), defeating FRITZ 4–2. FRITZ won the World Computer Chess

Championship in 1995. In 2002 it drew the ‘‘Brains in Bahrain’’ match against

former world champion, Vladimir Kramnik, 4-4, and in 2003 it drew again a four-

game match against Garry Kasparov. In 2006 FRITZ defeated the incumbent world

champion, Vladimir Kramnik, 4–2. HIARCS won the 1993 World Microcomputer

Chess Championship. In 2003 it drew a four-game match against Grandmaster

Evgeny Bareev, then the 8th ranked player in the world. (All four games ended in a

draw.) In 2007 HIARCS won the 17th International Paderborn Computer Chess

Championship.

Table 4 provides the results against these top commercial programs. Note that

EVOL* was evolved by learning once from FALCON (and not from the program it

played against).

The results show that the performance of genetically evolved program is on par

with that of the top commercial chess programs, outperforming HIARCS by 52 Elo

points, obtaining an almost equal score against FRITZ, and being slightly

outperformed by JUNIOR (by 32 Elo points).

In addition, Table 5 compares the tactical performance of our evolved organism

against these three commercial programs. The results show the number of ECM

positions solved by each program. A similar trend emerges, i.e., the evolved

organism is on par with FRITZ and HIARCS, and slightly inferior to JUNIOR in terms of

the tactical strength.

Note that all the experiments described above were conducted on a uniform
platform, i.e., for each match both programs ran on the same machine, and were

allocated the same resources (e.g., same memory size, opening book, endgame

Table 3 Number of ECM positions solved by each program (time: 5 s per position)

EVOL* FALCON CRAFTY

649 645 593

Table 2 CRAFTY versus EVOL* and FALCON (W% is the winning percentage, and RD is the Elo rating

difference)

Match Result W(%) RD

FALCON–CRAFTY 173.5–126.5 57.8 ?55

EVOL*–CRAFTY 177.0–123.0 59.0 ?63

Genet Program Evolvable Mach

123

tablebases, etc.). In the next subsection we report on the performance of our evolved

organism in a recent World Computer Chess Championship, which was not

conducted on a uniform platform. It should be pointed out that when matches are not

conducted on a uniform platform, the hardware greatly affects the outcome of the

match. A program running on a faster machine can process a larger number of

positions given the same time (i.e., it has a higher nodes per second rate), and

consequently, conduct a deeper search in comparison to its opponent, leading

thereby to a stronger performance.

4.4 Performance at the 2008 world computer chess championship

Using our expert–driven approach, we participated with a genetically evolved

version of our program in the 2008 World Computer Chess Championship in

Beijing, China3. Competing with an average laptop against 9 of the strongest

programs in the world (8 of which ran on fast multicore machines ranging from 4 to

40 cores), our program reached 2nd place in the World Computer Speed Chess

Championship and 6th place in the World Computer Chess Championship. These

highly surprising results, especially in light of the huge hardware handicap, in

comparison to our competitors, demonstrate the capabilities of our expert-driven

approach.

Table 6 provides the list of competitors, the number of processors/cores utilized,

and the result of our genetically evolved program against each competitor.

The results in Table 6 show that our evolved organism managed to defeat several

programs running on markedly faster machines (up to 40 times the speed of our

platform).

Table 4 EVOL* versus JUNIOR, FRITZ, and HIARCS (W% is the winning percentage, and RD is the Elo

rating difference)

Match Result W(%) RD

EVOL*–JUNIOR 135.0–165.0 45.0 -35

EVOL*–FRITZ 154.0–146.0 51.3 ?9

EVOL*–HIARCS 172.5–127.5 57.5 ?52

Table 5 Number of ECM positions solved by each program (time: 5 s per position)

EVOL* JUNIOR FRITZ HIARCS

649 681 640 642

3 Our genetically evolved program participated under the name FALCON, which is the original name we

had used in previous championships. Even though a name reflecting evolution (such as FALCONGA) might

have been more appropriate, it is customary that the participants use the same program name every year,

even when using a substantially different version.

Genet Program Evolvable Mach

123

5 Concluding remarks and future research

In this paper, we presented a novel expert-driven approach for efficient

automatic tuning of the parameters of a chess program’s evaluation function.

Wherever an intelligent entity already exists, we can employ it as an expert

within our GA-based framework to evolve organisms that mimic its behavior. In

other words, our approach enables duplicating the behavior of another intelligent

organism by observing merely its performance, without accessing its underlying

mechanism.

According to our experiments, organisms evolved within a few minutes from

randomly initialized chromosomes to sets of highly-tuned parameters that yield

similar performance to that of the expert, with respect to the same set of positions.

The results of the games played demonstrate the significant gain of the evolved

version, which clearly outperforms its original version. Note that the successful

duplication of the expert’s behavior was achieved despite the fact that the evaluation

function of the evolved program consists of a considerably smaller number of

parameters.

In this extended version of our previous work [13], we included an extended set

of experiments to assess more accurately the performance of the evolved program.

Specifically, we measured also the performance gain due to evolution by comparing

a random organism against the evolved organism and the expert, ran a longer series

of matches between the evolved organism and the expert, compared the

performance of the evolved organism against three top commercial chess programs,

and observed the tactical performance of the evolved organism against these top

programs. Finally, we provided a detailed account of our participation in the 2008

World Computer Chess Championship, where despite a huge hardware disadvan-

tage, our genetically evolved program achieved second place in the World

Computer Speed Chess Championship and sixth place in the World Computer Chess

Championship. These extended results further establish the practical merit of our

Table 6 Results of our genetically evolved program (using one core) against each of the competitors in

the 2008 World Computer Speed Chess Championship (WCSCC) and World Computer Chess Cham-

pionship (WCCC); ‘‘?’’ stands for a victory for our program, ‘‘ - ’’ stands for a loss, and ‘‘=’’ stands for

a draw

Program Number of Cores WCCC Result WCSCC Result

RYBKA 40 - ?

CLUSTER TOGA 24 ? ?

JONNY 16 = ?

JUNIOR 12 = =

HIARCS 8 - -

SHREDDER 8 - =

THE BARON 4 ? =

SJENG 4 - =

MOBILE CHESS 1 ? ?

Genet Program Evolvable Mach

123

GA-based method for automatically learning the parameters of a chess program’s

evaluation function.

For future research, we intend to develop additional capabilities based on the

presented expert-driven approach. In this paper we focused on how another

computer program can serve as an expert. However, using human players as experts

is a more difficult challenge, as there is no explicit notion of a numerical evaluation

of a position. We believe, though, that a record of hundreds of games of a human

player would provide sufficient data for similar learning to take place. One method

we intend to explore is to extract several thousand positions from games played by a

human expert, and for each position assign higher fitness for the organism that

produces the move played by the expert. If successful, this approach would basically

enable the program to perform like the expert, without ‘‘probing’’ his/her ‘‘mind’’.

For example, we might be able to develop a program that plays like Kasparov just

by learning from his games.

In this work we used a single expert. An alternative implementation might

employ several experts, using the ‘‘wisdom of crowds’’ concept to evolve an

individual which is ‘‘wiser’’ than the experts. It is well known that each chess

program has its strengths and weaknesses. By employing several expert chess

engines, it might be possible to combine the strengths of all of them, and outperform

each individual expert.

Our expert-driven approach could also be applied to the problem of player

recognition. Given a set of N players, the simplest approach is to separately evolve

N organisms, each mimicking the behavior of one of the players, respectively. Then,

given a query game (played by one of the N players), we would let each of the

generated organisms evaluate the position. The player whose cloned organism

agrees most closely with the moves made, is most likely to have played the game in

question.

Finally, we believe that the approach pursued in this paper for parameter tuning

could be applied to a wide array of problems in which the output of an expert’s

evaluation function is available for training purposes.

Appendix

A. Experimental setup

Our experimental setup consisted of the following resources:

– FALCON chess engine running under UCI protocol, and CRAFTY 19, JUNIOR 9,

FRITZ 8, and HIARCS 8 running as a native ChessBase engines.

– Encyclopedia of Chess Middlegames (ECM) test suite, consisting of 879

positions.

– Fritz 8 interface for automatic running of matches. Fritz opening book was used

for all games.

– AMD Athlon 64 3200? with 1 GB RAM and Windows XP operating system.

Genet Program Evolvable Mach

123

B. Elo rating system

The Elo rating system, developed by Arpad Elo, is the official system for calculating

the relative skill levels of players in chess. The following statistics from the January

2009 FIDE rating list provide a general impression of the meaning of the Elo rating

system:

– 21079 players have a rating above 2200 Elo.

– 2886 players have a rating between 2400 and 2499, most of whom have either

the title of International Master (IM) or Grandmaster (GM).

– 876 players have a rating between 2500 and 2599, most of whom have the title

of GM.

– 188 players have a rating between 2600 and 2699, all of whom have the title of

GM.

– 32 players have a rating above 2700.

Only four players have ever had a rating of 2800 or above. A novice player is

generally associated with rating values below 1400 Elo. Given the rating difference

(RD) between player A and player B, the expected winning rate w (0 B w B 1) of

player A is given by

w ¼ 1

10�RD=400 þ 1
: ð1Þ

Given the winning rate of player A against player B (as is the case in our

experiments), the expected rating difference between the two players can be derived

from the above formula, i.e.,

RD ¼ �400 log10ð
1

w
� 1Þ: ð2Þ

In addition, given the results of a series of N matches between two players, we

can derive confidence intervals for their rating difference. Without loss of

generality, let W, D, and L denote, respectively, the number of wins, draws, and

losses of the first player. The mean score and standard deviation are given,

respectively, by

x ¼ W þ D=2

N
: ð3Þ

and

s ¼

ffi

W � ð1� xÞ2 þ D � ð0:5� xÞ2 þ L � x2

N � 1

s

: ð4Þ

Note that x is essentially an estimate of the expected winning rate. Now, suppose

that we are interested in computing, for example, the 95% confidence interval

(which corresponds to ± two standard deviations) of the rating difference. For this

we compute the lower and upper ends of the winning rate, i.e., wlo ¼ x� 2s and

whi ¼ xþ 2s. Substituting wlo and whi in Eq. 2 we obtain the corresponding lower

and upper ends of the 95% confidence interval of the rating difference. Given any

Genet Program Evolvable Mach

123

confidence level, one can compute the corresponding RD confidence interval

similarly to the above described steps.

References

1. S.G. Akl, M.M. Newborn, The principal continuation and the killer heuristic. in Proceedings of the
5th Annual ACM Computer Science Conference (ACM Press, Seattle, WA, 1977), pp. 466–473

2. P. Aksenov, Genetic Algorithms for Optimising Chess Position Scoring. Master’s Thesis, University

of Joensuu, Finland (2004)

3. T.S. Anantharaman, Extension heuristics. ICCA J. 14(2), 47–65 (1991)

4. J. Baxter, A. Tridgell, L. Weaver, Learning to play chess using temporal-differences. Mach. Learn.

40(3), 243–263 (2000)

5. D.F. Beal, Experiments with the null move. Advances in Computer Chess 5, in ed. by D.F. Beal

(Elsevier Science, Amsterdam, 1989), pp. 65–79

6. D.F. Beal, M.C. Smith, Quantification of search extension benefits. ICCA J. 18(4), 205–218 (1995)

7. Y. Björnsson, T.A. Marsland, Multi-cut pruning in alpha-beta search. in Proceedings of the First
International Conference on Computers and Games, Tsukuba, Japan (1998), pp. 15–24

8. Y. Björnsson, T.A. Marsland, Multi-cut alpha-beta-pruning in game-tree search. Theor. Comput. Sci.

252(1–2), 177–196 (2001)

9. M. Block, M. Bader, E. Tapia, M. Ramirez, K. Gunnarsson, E. Cuevas, D. Zaldivar, R. Rojas, Using

reinforcement learning in chess engines, Res. Comput. Sci. 35, 31–40 (2008)

10. M.S. Campbell, T.A. Marsland, A comparison of minimax tree search algorithms. Artif. Intell. 20(4),

347–367 (1983)

11. S. Chinchalkar, An upper bound for the number of reachable positions. ICCA J. 19(3), 181–183 (1996)

12. O. David-Tabibi, A. Felner, N.S. Netanyahu, Blockage detection in pawn endings. in Proceedings of
the 2004 International Conference on Computers and Games, eds. by H.J. van den Herik, Y.

Björnsson, N.S. Netanyahu (Springer (LNCS 3846), Ramat-Gan, Israel, 2006), pp. 187–201

13. O. David-Tabibi, M. Koppel, N.S. Netanyahu, Genetic algorithms for mentor-assisted evaluation

function optimization. in Proceedings of the Genetic and Evolutionary Computation Conference
(Atlanta, GA, 2008), pp. 1469–1476

14. O. David-Tabibi, N.S. Netanyahu, Extended null-move reductions. in Proceedings of the 2008
International Conference on Computers and Games, eds. by H.J. van den Herik, X. Xu, Z. Ma,

M.H.M. Winands (Springer (LNCS 5131), Beijing, China, 2008), pp. 205–216

15. C. Donninger, Null move and deep search: Selective search heuristics for obtuse chess programs.

ICCA J. 16(3), 137–143 (1993)

16. J.J. Gillogly, The technology chess program. Artif. Intell. 3(1–3), 145–163 (1972)

17. R. Gross, K. Albrecht, W. Kantschik, W. Banzhaf, Evolving chess playing programs. in Proceedings
of the Genetic and Evolutionary Computation Conference (New York, NY, 2002), pp. 740–747

18. A. Hauptman, M. Sipper, Using genetic programming to evolve chess endgame players. in

Proceedings of the 2005 European Conference on Genetic Programming (Springer, Lausanne,

Switzerland, 2005), pp. 120–131

19. A. Hauptman, M. Sipper, Evolution of an efficient search algorithm for the Mate-in-N problem

in chess. in Proceedings of the 2007 European Conference on Genetic Programming (Springer,

Valencia, Spain, 2007), pp. 78–89

20. E.A. Heinz, Extended futility pruning. ICCA J. 21(2), 75–83 (1998)

21. R.M. Hyatt, A.E. Gower, H.L. Nelson. CRAY BLITZ. Computers, chess, and cognition, in eds. T.A.

Marsland, J. Schaeffer (Springer, New York, 1990), pp. 227–237

22. G. Kendall, G. Whitwell, An evolutionary approach for the tuning of a chess evaluation function

using population dynamics. in Proceedings of the 2001 Congress on Evolutionary Computation.

(IEEE Press, World Trade Center, Seoul, Korea, 2001), pp. 995–1002

23. J. McCarthy, Chess as the Drosophila of AI. Computers, chess, and cognition, eds. T.A. Marsland,

J. Schaeffer (Springer, New York, 1990), pp. 227–237

24. H.L. Nelson. Hash tables in CRAY BLITZ. ICCA J. 8(1), 3–13 (1985)

25. A. Reinfeld, An improvement to the Scout tree-search algorithm. ICCA J. 6(4), 4–14 (1983)

26. J. Schaeffer, The history heuristic. ICCA J. 6(3), 16–19 (1983)

Genet Program Evolvable Mach

123

27. J. Schaeffer, The history heuristic and alpha-beta search enhancements in practice. IEEE Trans.

Pattern. Anal. Mach. Intell. 11(11), 1203–1212 (1989)

28. J. Schaeffer, M. Hlynka, V. Jussila, Temporal difference learning applied to a high-performance

game-playing program. in Proceedings of the 2001 International Joint Conference on Artificial
Intelligence (Seattle, WA, 2001), pp. 529–534

29. J.J. Scott. A chess-playing program, in machine intelligence 4, eds. B. Meltzer, D. Michie (Edinburgh

University Press, Edinburgh, 1969), pp. 255–265

30. D.J. Slate, L.R. Atkin, CHESS 4.5—The Northwestern University chess program. Chess skill in man

and machine, ed. by P.W. Frey (Springer, New York, 2nd ed, 1983), pp. 82–118

31. R.S. Sutton, A.G. Barto. Reinforcement learning: an introduction (MIT Press, Cambridge, MA, 1998)

32. G. Tesauro, Practical issues in temporal difference learning. Mach. Learn. 8(3–4), 257–277 (1992)

33. W. Tunstall-Pedoe (1991) Genetic algorithms optimising evaluation functions. ICCA J. 14(3), 119–128

(1991)

34. M.A. Wiering, TD Learning of Game Evaluation Functions with Hierarchical Neural Architectures.

Master’s Thesis, University of Amsterdam (1995)

Genet Program Evolvable Mach

123

	Expert-driven genetic algorithms for simulating evaluation functions
	Abstract
	Introduction
	Learning in computer chess
	Conventional versus evolutionary learning in computer chess
	Previous evolutionary methods applied to chess

	Expert-driven fitness evaluation
	The chess programs
	Encoding the evaluation function
	Expert-driven fitness function
	GA parameters

	Experimental results
	Learning results
	Performance of the evolved organism against the expert
	Performance of the evolved organism against other programs
	Performance at the 2008 world computer chess championship

	Concluding remarks and future research
	Appendix
	A. Experimental setup
	B. Elo rating system

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

