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ABSTRACT
This paper presents an integrated approach, combining a
state-of-the-art commercial object detection system and ge-
netic algorithms (GA)-based learning for automatic object
classification. Specifically, the approach is based on apply-
ing weighted nearest neighbor classification to feature vec-
tors extracted from the detected objects, where the weights
are evolved due to GA-based learning. Our results demon-
strate that this GA-based approach is considerably superior
to other standard classification methods.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning—Parameter learning

General Terms: Algorithms.

Keywords: Genetic algorithms, parameter tuning, com-
puter vision, automatic object recognition

1. INTRODUCTION
Protrack is a company developing and selling products

for video surveillance. A major application developed in the
company is a far-field outdoor intrusion detection system
based on a real-time video motion detection technology for
a scanning camera. The system alerts for any moving object
in the scanned area. The algorithm is robust to camera noise
and can filter back and forth motion such as trees swaying
in the wind. However, the main remaining gap concerns the
ability to distinguish between significant and insignificant
motion (e.g., alerting any human motion while filtering out
animal motion) and to detect humans in an area where cars
are usually moving and vice versa. For this reason, auto-
matic classification of (detected) moving objects is needed.
The main requirement is to classify according to the fol-
lowing four categories: “walking man”, “crawling human”,
“animal”, and “car”.
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In this paper we briefly describe how ProTrack’s mod-
ule detects objects and extracts their feature vectors. We
then discuss how these feature vectors can be used for stan-
dard object classification, as well as classification due to
GA-based learning. Our results demonstrate a significant
improvement due to the latter.

2. BACKGROUND
Numerous approaches have been proposed for object clas-

sification. Some methods draw on shape information for
object detection in still images [4, 6, 8]. However, these
methods may require large datasets for learning and consid-
erable CPU power. Also, false positives may pose a problem
since the detection is performed on each video frame. Other
object classification methods [1, 2] in far-field video that are
based on scene modeling assume a static camera, i.e., they
are not applicable to a scanning camera.

Similar to [1, 2], ProTrack’s method is based on classify-
ing an object based on its motion pattern and various shape
parameters. The input to the classifier is the low-level data
generated by the motion detection algorithm. In contrast to
common motion detection algorithms, our motion detection
is based on deploying a net ofmicro-trackers in the video im-
age, where each micro-tracker computes the backward path
along the image sequence of a 5×5 pixel patch in the current
video frame. Given the image patch center location P (t) for
the current video frame t, the computed backward path con-
tains the patch locations P (t−1), ..., P (t−N) in the previous
video frames t − 1, ..., t − N , respectively. When a micro-
tracker computes a consistent backward path of an image
patch with an overall translation above a certain threshold
(e.g., 6 pixels), it is considered to be part of a moving object.
Using standard clustering techniques, the micro-trackers are
grouped into moving objects (see Figure 1).

The paths computed by the micro-trackers contain valu-
able information about the motion pattern of different parts
of the detected moving object. This information can be used
to distinguish between rigid objects (like cars) and non-rigid
objects (like walking humans).

The object classification algorithms presented below have
a classic structure. A feature vector, which is a compact rep-
resentation of the essential information about a moving ob-
ject, is extracted for each moving object. A learning dataset
containing samples of each motion category is then built and
used in the learning stage to train the system and compute
a classification rule based on the above feature vectors.



Figure 1: An example of micro-tracker variance for
human and car.

For each detected object, the following feature values are
calculated: velocity, acceleration, acceleration rate, shape
ratio, velocity to height ratio, object size, average velocity
velocity projection, average velocity along the x-axis, aver-
age velocity along the y-axis, and nine moment values (with
respect to velocity variances), i.e., a total of 19 feature val-
ues. Given a 19-feature set of values, the classifier will issue
one of the four categories: “walking human”, “crawling hu-
man”, “animal”, or “car”.

3. CLASSIFICATION USING GAUSSIAN
MIXTURE MODEL

We first applied standard classification based on Gaussian
mixture model [5], assuming that the features are distributed
according to a multivariate Gaussian distribution for every
object class. Given the training set, the mean vector Mi and
the covariance matrix COVi are estimated for each object
category Ci. Given the set Fi of all the feature vectors
belonging to class Ci, the elements of the mean vector Mi

and the covariance matrix COVi are estimated by:
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where k, l, refer respectively to the k-th, l-th features of a
given feature vector.

In the testing phase, given a feature vector V , the con-
ditional probability Pi = Pr(V |Ci) is computed for each
object category Ci and the selected category for the object
is the one that maximizes this probability.

The training dataset contains 100 samples of each of the
four object categories. 75% of samples from each category
were randomly selected for training and the remaining 25%
for testing (i.e., total of 300 training samples, and 100 vali-
dation samples). This process was conducted several times,
randomly selecting each time the training and testing sets.

This approach yielded on average 63% classification accu-
racy (i.e., given a object, on average 63% of the time it is
classified correctly by the above method). A possible expla-
nation for this low classification rate is that the Gaussian
model does not adequately capture the underlying feature
distribution.

4. GA-BASED NEAREST NEIGHBOR
CLASSIFICATION

We also applied is nearest neighbor (NN) classification [3].
In this approach, each dataset sample contains d parameters
(19 in our case) and a class label (for training). Note that
each sample can be represented as a point in d-dimensional
space. Given a new unclassified sample, it will be assigned
the category of that training sample whose “distance” to the
unclassified sample is the smallest. (That is, the unclassified
sample is assigned the label of its nearest neighbor sample
in the training set.)

Given two points in space, how should the above dis-
tance be computed? Using the straightforward Euclidean

distance, without attaching different weights to the various
features, might not be representative, as it is obvious that
not all of the 19 features are equally important in deciding
the classification of the object. Instead, a weighted distance
[7] for feature vectors X and Y is computed by

NNw =

√√√√ d∑
i=1

wi(Xi − Yi)2,

where a weight wi(i = 1, ..., d) is learned for each of the d
parameters. Thus, if the significance of a certain parameter
is relatively low, its weight can be as small as 0, not affecting
the distance calculation at all.

Manually setting the 19 weights in our case required an in-
feasible amount of trial and error. Having reduced, however,
the problem to that of parameter optimization, the values
can be automatically optimized using genetic algorithms.

For our learning purposes we define the chromosome as
a list of weights. For example, having 19 weights (for the
19 parameters) and allocating 6 bits per weight (so that
the range of weights is 0 to 63), the chromosome consists
of 114 bits. Finally, the fitness function is defined as fol-
lows. During the learning phase, each organism (a set of
weights) classifies (due to its weighted distance calculation)
a set of test samples for which we know the expected correct
classification. The higher the classification accuracy of the
organism, the higher the fitness value will be. At the end of
the learning process, we select the best set of weights.

We used a standard implementation of GA with propor-
tional selection and uniform crossover (OrgNum = 200, Pm =
0.005, Pc = 0.75). Our experiments showed that just by
allowing for a weighted distance calculation, the classifica-
tion accuracy increases considerably in comparison to stan-
dard classification due to Gaussian mixtures, as well as ordi-
nary nearest neighbor classification (for which we obtained
roughly 75% accuracy). Incidentally, even basic 0/1 Boolean
weights results in an improved classification rate.

The following weights were evolved for the 19 parameters:
[20, 57, 1, 19, 4, 54, 43, 32, 0, 2, 7, 20, 25, 28, 19, 60, 13, 41,
4]. Note that some of the weights are set to very low values
(0, 1, 2), while others have higher values. Testing this set
of weights in a weighted nearest neighbor framework yields
on average 90% classification accuracy, i.e., a considerable
improvement over standard, non-evolutionary methods.

5. CONCLUDING REMARKS
In this paper we presented a genetic algorithms based ap-

proach for automatically learning the feature weights for
nearest neighbor classification. The results show a signif-
icant improvement over standard non-evolutionary classifi-
cation methods.
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